游客您好
第三方账号登录
  • QQ:2458797171

    在线时间:8:30-20:30

    客服电话

    13105665566

    电子邮件

    2458797171@qq.com
  • 环保学社APP

    用手机浏览器扫一扫

  • 扫描二维码

    关注微信公众号

推荐阅读
llx1988228 [戒多言]
未知星球 | 未知职业
  • 关注0
  • 粉丝0
  • 帖子25
精选帖子

[废水处理] 厌氧技术

[复制链接]
llx1988228 发表于 2012-12-21 09:08:42 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题 · 来自 浙江杭州
厌氧技术
厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。
    厌氧生物处理过程能耗低;有机容积负荷高,一般为5-
  
  10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。
    在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。
  1.厌氧接触法
  对于悬浮物较高的有机废水,可以采用厌氧接触法。厌氧接触法实质上是厌氧活性污泥法,不需要曝气而需要脱气。厌氧接触法对悬浮物高的有机废水(如肉类加工废水等)效果很好,悬浮颗粒成为微生物的载体,并且很容易在沉淀池中沉淀。在混合接触池中,要进行适当搅拌以使污泥保持悬浮状态。搅拌可以用机械方法,也可以用泵循环池水。据报道,肉类加工废水(BOD5约1000~1800mg/L)在中温消化时,经过6-12h(以废水入流量 计)消化,BOD5去除率可达90%以上。
   
  2.厌氧生物滤池
  厌氧生物滤池是密封的水池,池内放置填料,污水从池底进入,从池顶排出。微生物附着生长在滤料上,平均停留时间可长达 100d左右。滤料可采用拳状石质滤料,如碎石、卵石等,粒径在40mm左右,也可使用塑料填料。塑料填料具有较高的空隙率,重量也轻,但价格较贵。
  
  根据对一些有机废水的试验结果,当温度在 25℃一35℃时,在使用拳状滤料时,体积负荷率可达到3~6kgCOD/ m3·d;在使用塑料填料时,体积负荷率可达到3-10kgCOD/ m3·d。
  厌氧生物滤池的主要优点是:处理能力较高;滤池内可以保持很高的微生物浓度;不需另设泥水分离设备,出水SS较低;设备简单、操作方便等。它的主要缺点是;滤料费用较贵;滤料容易堵塞,尤其是下部,生物膜很厚。堵塞后,没有简单有效的清洗方法。因此,悬浮物高的废水不适用。
  3. 厌氧流化床反应器  是一种生物膜法处理方法,它利用砂等【请不要乱说话,词语被禁止】表面积的物质为载体,厌氧微生物以生物膜形式结在砂或其它载体的表面,在污水中成流动状态,微生物与污水中的有机物进行接触吸附分解有机物,从而达到处理的目的。
  本设备可广泛应用于食品加工、酿造、味精、造纸等高浓度有机污水。制革、制药、发酵淀粉等高浓度有机污水。羊毛加工,屠宰等一切COD大于2000的高浓度有机污水。
  YLH厌氧反应器采用以砂为载体,设备结构为内外两个圆筒,利用特制的轴流泵,使污水和有机生物膜的砂在外筒中进行循环,达到流化的目的。由于砂的比表面积大,每立方米可5500-6500m2/m3(折合一般填料40-50m3),因而生物接触面积特别大,因而处理效率很高,每立方米有效反应器容积可每天处理COD达35-45kgCOD/m3,比一般的厌氧设备处理3-6kgCOD/m3要大得多。
  
  YLH厌氧反应器采用循环原理,污水进入设备后,由电机带动内筒中的推进叶,把污水向下压形成较高流速的下向流。污水流到底部后进入内外筒间,这时污水为上向流,使砂水充分混合,污水与砂在内外筒中不断循环,从而达到流化的目的。
  处理出水通过设备上面的砂、水分离设备分离后,水流出设备外,砂留在设备内。运行所产生的甲烷气体在设备的上方由专门设备送到贮气罐后备用。
  特点:
  1、处理效率高,处理量大。能耗低,运行费用低,能自动连续运行。
  2、处理时能产生大量CH4气体,CH4可作燃料,能回收大量能源。
  3、占地面积省,适应性强,选型方便,工期短。
  4.厌氧折流板反应器
  美国Stanford 大学的McCarty及其合作者于1982年在厌氧生物转盘反应器的基础上改进开发出了厌氧折板反应器ABR(Anaerobic Baffled Reactor ,简称ABR)。该反应器是一中高新型高效厌氧反应器,从结构看相当于几个升流式污泥床的串联,实现了产酸菌群和产甲烷菌群在不同隔室生长的条件,在高浓度有机废水的处理中有特殊的优势。因具有结构简单、污泥截留能力强、稳定性高、对高浓度有机废水,特别是对有毒、难降解废水处理中有特殊的作用,因而引起了人们的关注
    ABR厌氧反应器内设置若干竖向导流板,将反应器分隔成串联的几个反应室,每个反应室都可以看作一个相对独立的升流式污泥床系统,废水进入反应器后沿导流板上下折流前进,依次通过每个反应室的污泥床,废水中的有机基质通过各反应室并与其中的微生物充分接触而得到去除。借助于水流的上升和沼气的搅动作用,反应室中的污泥上下运动,水流在不同隔室中流态呈现完全混合态。但是由于导流板的阻挡和污泥自身的沉降性能,污泥在水平方向的流速极其缓慢,从而大量的厌氧污泥被截留在反应室中,反映器在整个流程方向表现为推流式流态。
    ABR独特的分格式结构及推流式流态使得每个反应室中可以驯化培养出与流至该反应室污水水质环境条件相适应的微生物群落。ABR反应器前面隔室中以产酸菌为优势菌群,后面隔室中以产甲烷菌为优势菌群,使消化反应的产酸相和产甲烷相沿程得到分离,参与厌氧消化过程的微生物能够生长于各自最佳的生长环境中,使厌氧消化的效率大大提高。
   
  5.升流式厌氧污泥床
  UASB ( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。
  1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。
  UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
  
  基本要求有:
  
  (1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能;
    (2)良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度;
    (3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。
    UASB内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。在远离这股上升气、水流的地方容易形成死角。在这些死角处也具有一定的产气量,形成污泥和水的缓慢而微弱的混合,所以说在污泥层内形成不同程度的混合区,这些混合区的大小与短流程度有关。悬浮层内混合液,由于气体的运动带动液体以较高速度上升和下降,形成较强的混合。在产气量较少的情况下,有时污泥层与悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显。有关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合区。
  
    UASB具有高的容积有机负荷率,其主要原因是设备内,特别是污泥层内保有大量的厌氧污泥。工艺的稳定性和高效性很大程度上取决于生成具有优良沉降性能和很高甲烷活性的污泥,尤其是颗粒状污泥。与此相反,如果反应区内的污泥以松散的絮凝状体存在,往往出现污泥上浮流失,使UASB不能在较高的负荷下稳定运行。
    根据UASB内污泥形成的形态和达到的COD容积负荷,可以将污泥颗粒化过程大致分为三个运行期:
    (1)接种启动期:从接种污泥开始到污泥床内的COD容积负荷达到5kgCOD/m3.d左右,此运行期污泥沉降性能一般;
    (2)颗粒污泥形成期:这一运行期的特点是有小颗粒污泥开始出现,当污泥床内的总SS量和总VSS量降至最低时本运行期即告结束,这一运行期污泥沉降性能不太好;
    (3)颗粒污泥成熟期:这一运行期的特点是颗粒污泥大量形成,由下至上逐步充满整个UASB。当污泥床容积负荷达到16kgCOD/m3.d以上时,可以认为颗粒污泥已培养成熟。该运行期污泥沉降性很好。
    在UASB内虽有气液固三相分离器,混合液进入沉淀区前已把气体分离,但由于沉淀区内的污泥仍具有较高的产甲烷活性,继续在沉淀区内产气;或者由于冲击负荷及水质突然变化,可能使反应区内污泥膨胀,结果沉淀区固液分离不佳,发生污泥流失而影响了水质和污泥床中污泥浓度。为了减少出水所带的悬浮物进入水体,外部另设一沉淀池,沉淀下来的污泥回流到污泥床内。
    设置外部沉淀池的好处是:
    (1)污泥回流可加速污泥的积累,缩短启动周期;
    (2)去除悬浮物,改善出水水质;
    (3)当偶尔发生大量漂泥时,提高了可见性,能够及时回收污泥保持工艺的稳定性;
    (4)回流污泥可作进一步分解,可减少剩余污泥量。
    UASB的工艺设计主要是计算UASB的容积、产气量、剩余污泥量、营养需求的平衡量。
    UASB的池形状有圆形、方形、矩形。污泥床高度一般为3-8m,多用钢筋混凝土建造。当污水有机物浓度比较高时,需要的沉淀区与反应区的容积比值小,反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。
    气液固三相分离器是UASB的重要组成部分,它对污泥床的正常运行和获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视。根据经验,三相分离器应满足以下几点要求:
    1、混和液进入沉淀区之后,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀;
    2、沉淀器斜壁角度约可大于45度角;
    3、沉淀区的表面水力负荷应在0.7m3/m2.h以下,进入沉淀区前,通过沉淀槽低缝的流速不大于2m/m2.h;
    4、处于集气器的液一气界面上的污泥要很好地使之浸没于水中;
    5、应防止集气器内产生大量泡沫。
    第2、3两个条件可以通过适当选择沉淀器的深度-面积比来加以满足。
    对于低浓度污水,主要用限制表面水力负荷来控制;对于中等浓度和高浓度污水,在极高负荷下,单位横截面上释放的气体体积可能成为一个临界指标。但是直到现在国内外所取得的成果表明,只要负荷率不超过20kgCOD/m3.d,UASB高度尚未见到有大于10m的报道,第三代厌氧反应器除外。
    污泥与液体的分离基于污泥絮凝、沉淀和过滤作用。所以在运行操作过程中,应该尽可能创造污泥能够形成絮凝沉降的水力条件,使污泥具有良好的絮凝、沉淀性能,不仅对于分离器的工作是具有重要意义,对于整个有机物去除率更加至关重要。
    特别要注意避免气泡进入沉淀区,要使固——液进入沉淀区之前就与气泡很好分离。在气——液表面上形成浮渣能迫使一些气泡进入沉淀区,所以在设计中必须事先就考虑到:
    (1)采用适当的技术措施,尽可能避免浮渣的形成条件,防范浮渣层的形成;
    (2)必须要有冲散浮渣的设施或装置,在污泥反应区一旦出现浮渣的情况下,能够及时破坏浮渣层的形成,或能够及时排除浮渣。
    如上所述,UASB中污水与污泥的混合是靠上升的水流和发酵过程中产生的气泡来完成的。因此,一般采用多点进水,使进水均匀地分布在床断面上,其中的关键是要均匀——匀速、匀量。
    UASB容积的计算一般按有机物容积负荷或水力停留时间进行。设计时可通过试验决定参数或参考同类废水的设计和运行参数。
  
    1、污泥的驯化
    UASB设备启动的难点是获得大量沉降性能良好的厌氧颗粒污泥。最好的办法加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期最长可长达1-2年。实践表明,投加少量的载体,有利于厌氧菌的附着,促进初期颗粒污泥的形成;比重大的絮状污泥比轻的易于颗粒化;比甲烷活性高的厌氧污泥可缩短启动期。
    2、启动操作要点
    (1)最好一次投加足够量的接种污泥;
    (2)启动初期从污泥床流出的污泥可以不予回流,以使特别轻的和细碎污泥跟悬浮物连续地从污泥床排出体外,使较重的活性污泥在床内积累,并促进其增殖逐步达到颗粒化;
    (3)启动开始废水COD浓度较低时,未必就能让污泥颗粒化速度加快;
    (4)最初污泥负荷率一般在0.1-0.2kgCOD/kgTSS.d左右比较合适;
    (5)污水中原来存在的和厌氧分解出来的多种挥发酸未能有效分解之前,不应随意提高有机容积负荷,这需要跟踪观察和水样化验;
  (6)可降解的COD去除率达到70—80%左右时,可以逐步增加有机容积负荷率;  
  (7)为促进污泥颗粒化,反应区内的最小空塔速度不可低于1m/d,采用较高的表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥凝并为大颗粒。
    UASB的主要优点是:
    1、UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1;
    2、有机负荷高,水力停留时间长,采用中温发酵时,容积负荷一般为10kgCOD/m3.d左右;
    3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;
    4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;
    5、UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备。
    主要缺点是:
    1、进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;
    2、污泥床内有短流现象,影响处理能力;
    3、对水质和负荷突然变化较敏感,耐冲击力稍差。
  UASB工艺近年来在国内外发展很快,应用面很宽,在各个行业都有应用,生产性规模不等。实践证明,它是污水实现资源化的一种技术成熟可行的污水处理工艺,既解决了环境污染问题,又能取得较好的经济效益,具有广阔的应用前景。
  6.膨胀颗粒污泥床
  EGSB(Expanded Granular Sludge Bed),中文名膨胀颗粒污泥床,是第三代厌氧反应器,于20世纪90年代初由荷兰Wageingen农业大学的Lettinga等人率先开发的。其构造与UASB反应器有相似之处,可以分为进水配水系统、反应区、三相分离区和出水渠系统。与UASB反应器不同之处是,EGSB反应器设有专门的出水回流系统。EGSB反应器一般为圆柱状塔形,特点是具有很大的高径比,一般可达3~5,生产装置反应器的高度可达15~20米。颗粒污泥的膨胀床改善了废水中有机物与微生物之间的接触,强化了传质效果,提高了反应器的生化反应速度,从而大大提高了反应器的处理效能。
    厌氧膨胀颗粒床反应器是在上流式厌氧污泥床(UASB) 反应器的研究成果的基础上,开发的第三代超高效厌氧反应器,该种类型反应器除具有UASB反应器的全部特性外,还具有以下特征,
    即: ①高的液体表面上升流速和COD 去除负荷;
    ②厌氧污泥颗粒粒径较大,反应器抗冲击负荷能力强;
    ③反应器为塔形结构设计,具有较高的高径比,占地面积小;
  ④可用于SS 含量高的和对微生物有毒性的废水处理。
   
  7.IC反应器
  
  IC反应器中文名内循环厌氧反应器(Internal Circulation),由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等结构组成。经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD在此处被降解,产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的0.5-5倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过一级三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。
  
  由于大部分COD已经被降解,所以精处理区的COD负荷较低,产气量也较小。该处产生的沼气由二级三相分离器收集,通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后,上清液经出水区排走,颗粒污泥则返回精处理区污泥床。
   8.CASB厌氧生物反应器
  
  CASB(Circulation-flow Anaerobic Sludge Bed)循环流厌氧污泥床是一种利用厌氧微生物处理污水中有机污染物的主要设备之一。其特点是处理费用低(无需鼓风曝气)、可处理高浓度有机污染物污水、可回收利用沼气、设备占地面积小(容积负荷高、设备高度高)等。随着研究的深入,厌氧生物反应器在处理高难度有机废水方面的特殊效果也引起了高度观注。
  目前世界上应用最多的厌氧生物反应器是UASB厌氧生物反应器。这种反应器被称为第二代厌氧生物反应器。其特点是技术成熟、制造简便。随着流化反应理论的运用,以相对稳定的厌氧生物床为特点的UASB反应器显示出反应效率低的劣势。而主流第三代反应器如EGSB、IC等厌氧生物反应器运用流化反应理论,将厌氧生物反应器的应用领域和反应效率都大大推进一步,市场占有率也逐年提升。
  
  CASB也是一种在UASB基础上发展起来的新型高效厌氧生物反应器,且同时也是对EGSB、IC等第三代厌氧生物反应器的改进。从外形上看,CASB、EGSB、IC等都较UASB高大,因此在相同的容积下,CASB、EGSB、IC等都较UASB占地面积小;但EGSB一般拥有一个巨大的“脑壳”,这个“脑壳”的作用是用来进行气、固、液三相分离,如果这个“脑壳”不够大则气、固、液三相分离的效果就达不到,这种情况给EGSB的建造带来很大的负担;EGSB还拥有一个外回流系统,依靠此系统,反应器内的厌氧生物得以流化,但也增加了大量的动力消耗;IC不需要巨大的“脑壳”,也不需要外回流系统,但需要更高的“个头”,这个高出的“个头”的作用除提供气、固、液三相分离外,更主要的作用是实现依靠反应器自身产生的沼气进行反应器内回流,但这个高出的“个头”却不参与厌氧生物流化反应,因此消耗了部分反应器有效容积。CASB采用了特殊的内部构造,使其不需要巨大的“脑壳”,不需要外回流系统,也不需要额外高出的“个头”,却能获得更好的流化效果,适用领域更为广阔。
   
  CASB厌氧生物反应器中,进水与反应器中的厌氧生物菌在主反应区(A区)充分混合并反应,是反应器的主要产沼气区。在主反应区,厌氧生物菌和进水混合物随沼气向上移动,水质逐渐被净化,到达B区时,进水中有机物已经大部分得到降解,产气量明显降低。在B区,A区所产沼气被分离出来由沼气管排出,厌氧生物菌和水流夹带着少量的沼气进入C区。C区是副反应区,在C区,水中有机物进一步被厌氧生物菌降解,有少量产气,比重较大的厌氧生物菌直接落入A区,比重较小的厌氧生物菌附着着少量沼气随出水到达三相分离器。在经过三相分离器时,沼气被分离出来通过沼气管排出,比重较大的厌氧生物菌重新回到C区,比重较小的厌氧生物菌则随出水到达D区。在D区,比重较大的厌氧生物菌会形成一个不稳定的厌氧床继续降解有机物,比重较小的厌氧生物菌则随出水排出反应器。
  如图1所示,A区与B区、B区与C区、C区与A区之间分别有一竖向通道,三个通道中,A区与B区通道内的沼气含量远远高于其余两通道,从而A区与B通道区内的混合液比重也远远小于其余两通道,由此使A区与C区之间产生了压力差,C区压力大于A区,因此C区的厌氧生物菌和水就重新回到A区,从而产生了由A区到B区、B区到C区、C区再回到A区的内循环。
  内循环增大了A区的上升流速,使A区的有机物与厌氧生物菌接触面积增大,加快了水质净化速率;内循环稀释了进水浓度,减小了反应器内有机酸浓度梯度,改善了厌氧生物菌的生存环境,提高了厌氧生物菌的降解速率。由于CASB构造巧妙,其内循环量可数倍于现有厌氧反应器,同时出水水质高且稳定,不需要多级设置即可一次达到设计厌氧出水要求,处理效率因此可高于现有厌氧生物反应器一倍以上,投资可减少50%以上。
  项目工艺参数:
  容积负荷 8~40kgCOD/m3.d
    进水COD浓度 2000~30000mg/L
    COD去除率 90~98%
    反应器高度 22m
  主要应用领域:
  CASB主要应用于酿酒、淀粉加工、生物制药、有机化工、畜禽养殖、造纸等中高有机物浓度废水处理。

精彩评论1

yingwang321 发表于 2014-4-7 13:38:22 | 显示全部楼层 · 来自 上海
谢谢哦
您需要登录后才可以回帖 登录 | 立即注册  

本版积分规则

右上角“高级模式”进入更多文字、附件、图片等编辑模式;
发帖前请在网页顶端搜索网站内容,已有内容请勿重复发布;
请按版规要求发布帖子,禁止回复表情、数字等无意义内容;
请按网站要求的文件格式上传资料,建议将资料压缩后上传;
提倡文明上网净化网络环境,抵制“黄赌毒诈”等违法信息!

关于我们 | 版权声明 | 侵权申诉 | 帮助中心 | 浙ICP备13003616号-2  |  浙公网安备33011002013884号 网站统计

本站信息均由会员发表,不代表本站的立场;禁止发布任何违法信息及言论,若有版权异议请联系网站管理员。

Copyright © 2010- 爱我环保学社(http://www.25hb.com)版权所有 All Rights Reserved.

Powered by Discuz! X3.4© 2001- Comsenz Inc.