游客您好
第三方账号登录
  • QQ:2458797171

    在线时间:8:30-20:30

    客服电话

    13105665566

    电子邮件

    2458797171@qq.com
  • 环保学社APP

    用手机浏览器扫一扫

  • 扫描二维码

    关注微信公众号

推荐阅读
w2q888 [戒多言]
未知星球 | 未知职业
  • 关注0
  • 粉丝1
  • 帖子37
精选帖子

[高浓废水] 电镀专题

[复制链接]
w2q888 发表于 2012-12-20 16:20:08 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题 · 来自 浙江杭州
1.电镀工艺流程资料一、名词定义:
  1.1电镀:利用电解的方法使金属或合金沉积在工件表面,以形成均匀、致密、结合力良好的金属层的过程叫电镀。
  1.2 镀液的分散能力:
  能使镀层金属在工件凸凹不平的表面上均匀沉积的能力,叫做镀液的分散能力。换名话说,分散能力是指溶液所具有的使镀件表面镀层厚度均匀分布的能力,也叫均镀能力。
  1.3镀液的覆盖能力:使镀件深凹处镀上镀层的能力叫覆盖能力,或叫深镀能力,是用来说明电镀溶液使镀层在工件表面完整分布的一个概念。
  1.4镀液的电力线:电镀溶液中正负离子在外电场作用下定向移动的轨道,叫电力线。
  1.5尖端效应:在工件或极板的边缘和尖端,往往聚集着较多的电力线,这种现象叫尖端效应或边缘效应。
  1.6电流密度:在电镀生产中,常把工件表面单位面积内通过的电流叫电流密度,通常用安培/分米2作为度量单位
  二.镀铜的作用及细步流程介绍:
  2.1.1镀铜的基本作用:
  2.1.1提供足够之电流负载能力;
  2.1.2提供不同层线路间足够之电性导通;
  电镀工艺流程资料(二)2.1.3.3搅拌:搅拌可区分为空气搅拌、循环搅拌、机械搅拌等三项,依槽子之需求特性而重点有异,兹简介一般性考虑如下:
  a. 空气搅拌:应用鼓风机为气源,如使用空压机。则须加装AM Regalator降低压力,并加装oil Filter除油。风量须依液面表面积计算,须达1.5~2.0cfm,而其静压则依管路损耗,与液面高度相加而得。空气搅拌之管路架设,离槽底至少应有1英寸距离,离工件底部,应以大于8英寸为宜。一般多使用3/4英寸或1英寸管,作为主管,亦有人使用多孔管,但较易发生阻塞。开孔方式多采用各孔相间1/2英寸,对边侧开孔,与主管截面积1/3为原则。适量之空气搅拌可改善电镀效率,增加电流密度;但如搅拌过度,亦将形成有机添加剂氧化而造成异常消耗及污染。
  b. 循环搅拌:在一般运用上,多与过滤系统合件,较须注意的是确定形成循环性流动(入、排口位置选择),及pump选择流量应达2~3倍槽体积1hr以上。
  c. 机械搅拌:其基本功能是为了消除metal ion diffusion rafe不足问题。在空间足够之状态下,以45°斜角移动为佳,但一般都采有用垂直向摆动,较佳的位移量约在0.5~1.8m/min,而每stroke长约5~15cm之间。在设定条件时,应注意不可造成因频率过高,使板子本身摆动,而减小孔内药液穿透量。
  2.1.3.4过滤:一般均与循环搅拌合并,目的是去除槽液中之颗粒状杂质,避免发生颗粒状镀层。较重要的考量因子有三,分别如下:
  a. 过滤粒径:一般采用5u或10u滤蕊。若非环境控制良好,使用更小滤蕊可能造成滤材更换,损耗过多。
  b. 材质有多种材质供选择,不同系统光泽剂会有不同之限制,其中PP最具体广用性。
  c. Leaching:即便为适用材质之滤蕊,亦须经过Leaching处理(热酸碱浸洗程序)。
  2.1.3.5电源系统:供电系统之ripple须小于5%,(对部分较敏感产品甚至须小于2%),另须注意:
  a. 整流器最上限、最下限相对容易10%,系不稳定区域,应避免使用。
  b.除整流器外接所有接点务须定期清洁外,每月至少用钳表量校一次。
  c.整流器最好利用外接洁净气源送风,使内部形成至正压,让酸气无法侵入腐蚀。
  2.1.3.6阴极(rack及bus bar):
  a. 对铜制bus bar而言,约每120Amp至少应设计1cm2之截面积。同时不论电流/bus bar截面积大小,务必两侧设置输入接点,以避免电流分布不均。
  b. 对rach而言,应利用bus bar相接之接点,调整其导通一致,避免“局部阳极”的反生,同时对接点外之部分,亦宜全部予以胶林披覆,并定期检查,以避免因缝隙产生,而增加带入性污染。
  2.1.3.7阳极:
  a. 铜阳极应采用含微量磷,且均匀分布之无氧铜。其规格可概列如下:
  Cu≥99.9% P:0.04~0.06% O≤0.05%
  Fe≤0.003% S≤0.003% Pb≤0.002%
  Sb≤0.002% AS≤0.001% N≤0.002%
  b. 可能状态下尽量不要使用钛篮,因为钛篮将造成 Carriey或High Current Dewsity Brightener增加约20%的消耗,而不使用钛篮的状态,则须注意使阳极高出液面1~2英寸。
  c. 对阳极袋的考虑,基本上与滤蕊相同,一般常用Napped p.p或Dynel,并可考虑双层使用,唯阳极袋须定期清洗,以避免因过量的阳极污泥造成阳极极化。
  d. 一般均认为阴阳极之比例应在1.5~2︰1,但由于高速镀槽之推出,较佳的考虑是,控制阳极的相对电流密度小于20ASF,来决定阳极的数量,在使用钛篮的状态,其面积的计算,约为其(前+左+右)面积之1.4倍,亦即以钛篮正面积核算其电流密度约应小于40ASF。过大的阳极面积可能造成铜含量之上升,过小则可能造成铜含量不足,且二者均会造成有机添加剂的异常消耗及阳极块的碎裂。
  e.阳极在接近液面侧应加装遮板,而深度则应仅为镀件的75%(较浅4~5英寸),在板子尺寸不固定时,则应考虑浮动式遮板,对其左右侧的考虑亦同,故在槽子设计与生产板实际宽度不同,应考虑使用Rubber strip,但须注意当核算面积,加开电流时,应至少降低40%计算。对于此类分布问题,可以“电场”及“流 态”的观念考虑。
  2.1.3对零件提供足够稳定之附著(上锡)面;
  2.1.4对SMOBC提供良好之外观。
  2.1.2.镀铜的细步流程:
  2.1.2.1ⅠCu流程:上料→酸浸(1)→酸浸(2)→镀铜→双水洗→抗氧化→水洗→下料→剥挂架→双水洗→上料
  2.1.2.2ⅡCu流程:上料→清洁剂→双水洗→微蚀→双水洗→酸浸→镀铜→双水洗→(以下是镀锡流程)
  2.1.3镀铜相关设备的介绍:
  2.1.3.1槽体:一般都使用工程塑胶槽,或包覆材料槽(Lined tank),但仍须注意应用之考虑。
  a. 材质的匹配性(耐温、耐酸碱状况等)。
  b. 机械结构:材料强度与补强设计,循环过滤之入/排口吸清理维护设计等等。
  c. 阴、阳极间之距离空间(一般挂架镀铜最少6英寸以上)。
  d. 预行Leaching之操作步骤与条件。
  2.1.3.2温度控制与加热:镀槽之控制温度依添加特性/镀槽之性能需求而异。一般而言操作温度与操作电流密度呈正向关系,但无论高温或低温操作,有机添加剂必定有分解问题。一般而言,不容许任何局部区域达60℃以上。在材质上,则须对耐腐蚀性进行了解,避免超出特性极限,对镀铜而言,石英及铁弗龙都是很适合的材料。
  
  [分享]电镀专题:2.直接电镀工艺介绍
  法拉第定律  第一定律──在镀液进行电镀时(电解)阴极上所“附积”的金属重量(或阳极所溶蚀者)与所通过的电量成正比.   第二定律──在不同镀液中以相同的电量进行电镀时,其各自附积出来的重量与其化学当量成正比.   上述第一定律中的“电量”,即为电流强度与时间的乘积,理论单位是库伦,实肜电位为安培.分或安培.小时.   以硫酸铜中的二价铜离子为例,其第一个库伦的电量在100%的阴极效率下可以镀出0.3294mg的纯铜,每1安培小时可镀出1.186g的纯铜.电量越多镀出越多.   第二定律是对不同镀液的比较而言,上述的镀铜量是指硫酸铜的二价铜离子而言,若镀液换成氰化铜液的一价铜离子之时,则同样1个安培小时的电量可以镀出纯铜2.372g,只因1价铜的化当量为63.57/1,2价铜的化学当量是63.57/2,故前者的附积量在同电量时是后者的两倍. (二) 阴极膜  电镀进行时愈接近阴极被镀物表面时其金属离子浓度愈低,现以其浓度下降1%处起直到被镀物表面为止的一薄层液膜称之为“阴极膜”.薄层中由于金属离子渐少且发生氢气以致电阻增加导电不良阻碍金属之顺利登陆.且此膜也因镀体之外形起伏而有原薄不同,外形凸起峰处膜层较薄故远方之高浓度离子容易补充使该处优先被镀上,即所谓之高电流密度区,反之低凹谷处自然不容易镀上.现将各局部区域之电流强度以公式讨论之: Ilim=nFADCb/∮ Ilim──局部区域电流之大小 n───电子数 F───法拉第常数(镀出1g金属所需之电量) A───该处面积大小 D───金属离子之扩散系数 Cb──大量镀液之平均浓度 ∮──阴极膜厚度  由上式可知降低阴极膜的厚度有助于镀层之均匀.故电镀需作各种搅拌如吹气、镀流动、阴极的摆动等其目的都在降低阴极膜的厚度,在接近被镀物表面处得以增多金属离子的供应量.   (三) 镀液的电阴  总电阴=外路及接点+生液体+阴极膜.   电路板在进行量产时待镀的面积都很大,故需要的直流电流也极高而常达数千安培,为求良好的镀层其电压多控制在5伏之下.但按A=V/R之公式看来,其总电阻必须极小才能满足此奥姆定律,故应保持外路及接点低外路及接点,加热镀液以降低生液体,搅拌镀液以降低阴极膜.否则电压太高了会造成水彼电,解会产生多量的气压,大大影响镀层的品质.   (四) 当金属浸于其盐类之溶液中时,其表面即发生金溶成离子或离子登陆成为金属之置换可逆反应,直到某一电位下达到平衡.若在常温常压下以电解稀西安液时白金阴极表面之氢气光做为任意零值,将各种金属与此“零值极”连通做对比时,可找各种金属对氢标准电极之电位来.再将金属及其离子间之氧化或还原电位对NHE比较排列而成“电化学次序”或电动次序.以还原观点而言,比氢活泼的金属冠以负值使其排列在氢的上位,如锌为-0.762,表示锌很容易氧化成离子,不容易登陆成金属,理论上至少要外加0.762V以上才能将之镀出. 比氢高贵者冠以正值,排在氢的下位。愈在下位者愈容易还原镀出来,也就是说其金属能在自然情况下较安定,反之在上位者则容易生锈了.   (五) 氢超电压  电镀时氢离子会泳向阴极而形成氢气逸出,此种氢离子在水溶液中的行径与金属相同,故比氢活泼的金属在电镀时,理论上是氢先出来后才轮到金属的登陆,但事实上却是金属比氢出来的多,此种阻止氢出来的额外电坟称之为“氢超电压”.   氢气出现在镀件表面上未立即赶走时,会阻止后来金属在该点的登陆,进而造成镀层的凹点故设法提高镀液的氢超电压及降低镀液表面张力并搅拌以赶走氢气泡都是电镀所常追求的技术.   (六) 极化  金属电极在其盐类水溶液中可以形成一各可逆的平衡,对外界而言并无正负之分极现象.但若另外施加一电压分出正负极进行电解时,此外加电压称为Overvoltane,overpotential,或极化,却克服各种障碍使金属得以顺利登陆,必须超过各种极化,如活化极化、浓度极化、电阻极化、及气体极化时,其总值即为电镀进行所需之最低电压.为使镀层完美起见常加入各种助剂,以改变阻极表面的局部现象,使镀层更为均匀.   (七) 质量输送  带正电荷的金属离子团要不断的泳向阴极,以补充其不断的消耗.此种离子团的移动是以三种方式进行,即迁移,对流及扩散现分述于后:   (1) 迁移──在1mole硫酸铜溶液中以1v/cm电位梯度在25℃下进行电镀,Cu的绝对迁移率是5.9*10-4cm/sec.当阴阳极相距10cm在3V下操作时,阳极溶出的铜离子要93分钟才向阴极走1cm远,要15小时才能达到阴极表面.故知电镀的成果,迁移所占的功劳实在不大,只能将阴极附近的金属离子推向陆地而已.   (2) 对流──镀液必须做快速的流动,使后方高浓度的金属离子能尽快的补充阴极膜中的消耗,故对流才是质量输送的主力.以吹气、过滤流动、搅动、及加热等方式使镀液快速的交换是电镀最重要的工程.   (3) 扩散──阴极膜厚约0.2m/m,在快速搅拌流速达25cm/sec时可压薄至0.1m/m,大大加快了由高浓度向低浓度自然扩散的缓慢效果.但金属离子团是如何抛弃掉各种配位的其它东西而独自穿过最后的电双层而自身或带有少部份配体登陆的,其原理至今未明.   由上可知,对PCB的镀铜而言,最有效完成质量输送的方式就是镀液的快速搅拌,尤以对PTH而言,孔中镀液的快流通才能有效的建立孔壁规范的厚度,而不至发生狗骨现象.因PCB板面面积很大,要镀液经搅拌流过孔中或板子摆动使流过孔中都很不容易做到,较有可能的办法是以强烽的液柱在镀液中喷向孔去,当然大部份还是打在板面上或互相干扰而无效,可改成部份抽回或在板子的背面抽回较有希望.总而言之如何使镀液能快速的流过每一孔中是孔铜壁成长的主要开键.   (八) 添加助剂  除了基本配方法,电镀的是否能实用化全在添加剂,尤其对于小孔深孔等高难度的板子,助剂更是非常重要.一般助剂约可分为光泽剂Brightener,整平剂,载运剂,细晶剂,润湿剂.此等助剂之理论基础尚不成熟,多半是来自不断实验的结果,故几乎全为商业化的范围,其参考来源多为各种专利,但已发表者几乎都已过时而不再是第一流的产品了,现役上市者多在阶段.   由各数据看来硫酸铜镀液之微布力非常好能将待镀面上种细小的刮痕及凹陷先预以填平,再镀全面.但对PTH的孔壁而言,要想发挥这微分布的优点,则必须要使高浓度的镀液能够不断的流进去,降低阴极膜的厚度,才是施展其长处的首要条件. 二.小孔或深孔镀铜的讨论  电路板的装配日趋紧密,其好处不外减少最后产品的体积及增加信息处理的容量及速度.尤其自VLSI大量开发后,IC在板子上的装配已由早期的通孔插装,渐改进至表面黏装之SMT了.对板子而言细线及小孔是必然要面对的问题.而就小孔而言,受冲击最大的就是现有的镀铜技术,要在孔的长宽比很高时,既要得到1mil厚的孔壁,又不可发生狗骨现象,面且镀层的各种物性双要通过现有的各种规范,其中种种需待突破的困难实在不少.各国的业界现正从基本配方、添加剂、设备等多方面努力,至今尚少重大的突破.现将小孔的难镀以下列事实讨论之.实体部份远大于孔径部份,比种强力的水流几乎都浪费在板面的阻碍上了.解决办法之一就是使液中的铜浓度增加,或可减少通过的次数,但这也是一条行不通的死巷,因2oz/gal的铜量几乎是板面与孔壁的镀层均匀颁比率的上限,再提高时狗骨会变严重,已不是添加剂所能帮忙的了.解决办法之二是改进化学铜镀层的物性使能达到规范的要求,目前日立公司的TAFⅡ制程,已进行数年的研究.   现阶佒对硫酸铜镀液所能做的事约有:   (1) 选择高纯度的物定助剂,如特殊的整平剂使在高电流处抑制镀层增加,使低电流处仍能有正常登陆,并严格分析、小心添加、仔细处理以保持镀液的最佳效果.   (2) 改变镀的设计,加大阴阳间的距离,减少高低电流密度之间的差异.   (3) 降低电流密度至15ASF以下,改善整流器出来直流的纹波量至2%以下.若不行时将电流密度再降低到5ASF,以时间换取品质.   (4) 增强镀液进出孔中的次数﹐或称顺孔搅拌﹐此点最为重要﹐也最不容易解决﹐加强过滤循环每小时至少2次,蔌啬超音波搅拌.   (5) 不要增加铜的浓度但要增大硫酸与铜的浓度比值,至少要在10/1以上.   (6) 助剂添加则应减少光泽剂用量,增加载体用量,并用安培小时计管理添加,定时用CVS分析助剂之裂解情形.   (7) 试用脉波电流法试镀,以减少面铜与孔铜之间的差异,并增加铜层的延展性,并能以不加添加剂的方式使镀层得以整平.   脉波方式的电流,是一种非常值得研究的路径,先期的成果也非常值得研究的路径,先期的成果也非常令人兴奋,只可惜市场上许多添加剂供货商并不热衷,为保既得利益不大支持研究.因一旦可从电流供应的方式使镀层得以改善,则销售已久的添加剂可能乏人问津,或需另起炉灶,皆非所顾也.总而言之,PCB的小孔及深孔镀铜待突破的地方还多得很,实非一蹴可及的.   理论上每次进入孔中的镀液其之铜量都全部留在孔壁上时所需要的次数为300次.何况在实际电镀铜所遭到的电流密度效率、阴极膜等等烦恼,实际上可能连20%的铜都未镀出.若再遇到长宽比.125/.012或10/1的板子时,其所需的理论换液次要高达380次,以20%的登陆成果而言,至少也要有2000回合以上的Turn over才行.然而其困难尚不仅此而已,孔径变小后,孔壁面积的减少远不如流速的剧烈减低.以8mil孔与25mil孔比较,其面积只减少33%,但流速却剧降至1.25%,更增加了更换2000次的困难.   即使上述可行,还要克服镀液的内聚力、与孔壁的阻力、分子引力、及阴极膜的障碍,故强力的水流是绝对需要的.
  
  电镀专题:3.锡铜合金电镀技术 众所周知,锡铅(Sn-Pb)合金焊料能优异,在电子元器件的组装领域得广泛应用。但是,非常遗憾的是Sn-Pb中的铅对于环境和人体健康有害,限制使用含铅电子材料的活动已正式启动。在欧洲欧洲委员会已提出电子机器弃物条令案的第3次草案明文规定,在2004年的废弃物中严禁有铅Pb、镉Cd、汞Hg和6价铬Cr等有害物质。在亚洲的日本于1998年已制定出家电产品回收法案,从2001年开始生产厂家对已使用过的废弃家电产品履行回收义务。根据这一法案,日本各个家电信息机器厂家开始励行削减铅使用量的活动。</P>
          在这样的背景下,强烈要求开发无铅焊接技术和相应的锡铜Sn-Cu合金电镀技术。</P>
          无铅焊料电镀技术要求</P>
          关于无铅焊料电镀层和电解液,除了不允许使用含铅物质之外比较难于实现的是要求与以往一直使用的Sn-Pb电镀层有同样的宝贵特性。具体要求的性能,如下所述:(1)环境安全性??不允许有像铅Pb等有害人体健康和污染环境的物质;(2)析出稳定性??获得均匀的外表面和均匀的合金比例;(3)焊料润湿性??当进行耐热试验和高温、高湿试验后,焊料的润湿性仅允许有很小程度的劣化;(4)抑制金属须晶产生;(5)焊接强度粘着性??同焊料材料之间接合可靠性;(6)柔韧性??不发生断裂;(7)不污染流焊槽;(8)低成本;(9)良好的可作业性??主要是指电解容易管理;(10)长期可靠性??即使是长期使用电解液,也能保证电镀层稳定;(11)排水处理??不加特殊的螯合剂(Chelate),可利用中和凝聚沉淀处理方法清除重金属。</P>
        <>  在选择无铅焊料电镀技术时,应当综合分析权衡上述诸多因素,选Sn-Pb电镀性能的无铅焊料电镀技术,选择Sn-Cu(合金焊料)电解液的原因作为无铅焊料电镀技术,现已研究很多种,诸如,试图以Sn-Zn、Sn-Bi、Sb-Ag和Sn-Cu电镀取代一直使用的Sn-Pb电镀。然而,这些无铅电镀技术也是各有短、长,并非十全十美。例如,Sn电镀的优点是低成本,确有电子元器采用电镀锡的力方法,因为是单一金属锡,当然不存在电镀合金比率的管理问题。可是,Sn电镀的缺点突出,如像产生金属须晶(Whisker)而且焊料润湿性随时间推移发生劣化。Sn-Zn电镀的长处于在成本和熔点低,美中不足是大气中焊接困难,必须在氮气中实现焊接。Sn-Bi电镀的优势是熔点低而且焊料润湿性优良,其劣势也不胜枚举:因为Bi是脆性金属,含有Bi的Sn-Bi镀层容易发生裂纹,而且组装后的器件引线和电路板焊接界面剥(Liftoff),更麻烦的是电解液中的Bi3+离子在Sn-Bi合金阳极或电镀层上置换沉积。Sn-Ag电镀的优点是接合强度以及耐热疲劳特性都非常好,缺点是成本高,也存在Sn-Ag阳极和Sn-Ag镀层上出现Ag置换沉积现象。</P>
        <>  上述的无铅电镀技术都有优异的特性,同时也存在很多有待进一步研究的课题,实用化为时尚早。为此,日本上村工业公司认为Sn-Cu电镀最有希望取代Sn-Pb电镀,可以发展成实用化技术,于是决定开发Sn-Cu电解液。关于Sn-Cu电镀层特性,它除了熔点稍许偏高(Sn-Cu共晶温度227℃)之外,润湿性良好。成本低,对流焊槽无污染,而且可抑制金属须晶生成。</P>
        <>  Sn-Cu合金焊料的开发Sn/Sn2+的标准电极电位是-0.136Vvs.SHE(25℃),然而Cu/Cu2+是+0.33V,两者之间的电位差比较大,在?般的单纯盐类电解液里,铜Cu很容易优先析出。而且,当用可溶性Sn阳极或者Sn-Cu合金阳极的时候,由于电解液中的Cu2+离子和阳极的Sn之间置换反应产生析出沉表1标准电解液和作业条件(获得sn-lwt%Cu镀层的情况积。因此,把电解液中的Sn2+和Cu2+的析出电位搞得相接近,需要有抑制铜Cu优析出的络合剂。通过研究各种各样的络合剂,最后终于找到Sn-Cu电解液配方,它能使Sn和Cu形成合金并可抑制在铜Cu阳极上的置换沉积。在这种电解液的基础出上,开发出镀层特性优良的Sn-Cu合金电解液“Soft
        Alloy GTC”,将在下文详细介绍。</P>
        <>Soft Alloy GTC的特点</P>
        <>  (1)电解液构成及作业条件</P>
        <>  关于Soft Alloy GTC的标准电解液构成和作业条件,详见表1所示。Soft Alloy
        GTC产品系列对应由滚筒式电镀直到高速电镀的宽阴极电流密度范围应用,同时,用户可根据用途选择电解液,例如,对于耐药性方面有问题的电子元器件可选用中性的电解液。</P>
        <>  (2)良好镀层外观</P>
          关于Sn-Cu电镀层的表面形状当放大1000倍时观察各种电解液构成的镀层(包括滚筒式电镀、支架式电镀和高速电镀电解液形成的镀层),均都致密且呈现半光泽状。

          (3)析出比率

          电镀层的析出比率、可作出定量分析。具体作法是使用SUS作为基底进行电镀,把其电镀层溶解到1:1硝酸溶液中,通过原子吸收光;谱分析将获得定量分析结果。例如,在支架电镀的电解液里金属比率和镀层里铜Cu含有率之间的关系如图1所示。在电解液里Cu的含有率增加的情况下,镀层里的铜Cu含有率也几乎成正比地增长,根据这种近似的线性关系很容易管理合金比例;电解液中Cu的含有率与1wt%时的阴极电流密度和镀层中Cu含有率的关系如图2所示,从中不难看出除了在低电流密度时镀层中的Cu含有率偏高?些之外,基本上与电流密度无关,比较稳定。也就是说,电流密度超过2A/cm2以后,基本上镀层中的含Cu率不再受阴极电流密度左右。

           (4)关于电镀层的熔点

          关于Sn-Cu电镀层的熔点测试方法如下,取10mg的Sn-Cu镀层,在流动氮气流速为50mL/分的环境下,将温度由室温开始,以10℃份的升温速度加温到300C,测量其熔点。测试结果,以差示扫描热量分析曲线表示,详见图4所示。对三种样品实测结果,它们的熔融峰值温度都处于Sn-Cu合金的共晶温度227℃附近(详见图4);即使是电镀层样品中的Cu含有率有差异,但是,熔融峰值温度几乎是相同的。

          (5)焊料润湿性优秀

          有比较才能有鉴别,为了证实Sn-Cu焊料镀层的润湿性是否优秀,采用Meniscograph方法构成的Zero
        CrossTime对各种焊料镀层断评比。具体作法是以Soft Alloy
        GTC-20电解液用支架式电镀方法制造出多种焊料镀层样品,通过高温高湿处理(温度:60℃相对湿度:95%,处理时间:168小时)后,进行润湿性评比。具体的Menis-cograph测试条件如表2所示。测试样品的制作过程如下:在铜基础材料上先电镀一层Ni,再在其表面上电镀所要测试的Sn-Cu镀层。用作对比的镀层样品是Sn和Sn-Pb镀尾测试条件完全相同。

          评比测试的结果,如图4所示。测试样品和对比用样品,当它们在高温高湿处理之前,各个焊料镀层的润湿性几乎是相同的。但是,经过高温高湿处理之后,利用Zero
        Cross Time进行比较,结果显示在图4里,一目了然。

          评比结果,除Sn-3.5wt%Cu镀层的润湿性比Sn-Pb镀层表2Meniscograph测试条件有所劣化之外,其它含铜率不同的Sn-Cu焊料镀层的润湿性劣化程度很小,堪称Sn-Cu焊料镀层润湿性优秀。

          (6)抑制金属须晶

          在铜质的封装引线框架上分别电镀有含Cu为1、2和4wt%的Sn-Cu镀层,并将它们置入50℃的恒温槽中存放3个月。作为对比的样品,它是在引线框架上电镀有Sn镀层,也上搂按上述条件存放3个月。事后观察各个电镀层发现,作为对比样品的Sn镀层上有明显的针状金属须晶出现,然而种含Cu率的Sn-Cu镀层上却无针状金属须晶。

          (7)加工性良好

          IC封装引线上的焊料镀层,必须具备柔韧性。因为,引线需要弯曲加工成形,若引线上的焊料镀层缺乏柔韧性,弯曲加工时引起镀层出裂纹并在裂纹处发生基底氧化,从而降低焊接可靠性。为此,曾在0.5mm厚铜板上和42Alloy板上电镀10μm厚的Sn-1wt%cu镀层,按照JIS规格H8504进行弯曲实验,结果良好。在铜板和42Alloy板上的镀层,并未发生裂纹,证实加工性良好。

          (8)不污染流焊槽

          通常,电子元器件焊接都是采取使用焊料槽的流焊焊接法,焊接过程中由印刷电路板上有Cu溶入并且镀层中的成份也溶入到流焊槽内,形成污染。关于有Cu溶入焊料槽内的问题,如像Sn-Pb焊料槽内有Cu也关系不大,因为已有清除Cu的实用技术。但是,Cu以外的异种金属混入焊料糟时,可能导致流焊特性劣化。为此,日本上村工业公司曾进行过专门研究,该公司开发的Sn-Cu电镀技术和现有的无铅焊料(如像Sn-0.7Cu、Sn-3.5Ag-0.75Cu和Sn-2.5Ag-0.7Cu-1Bi)技术相容,不会对流焊槽造成污染。

          (9)在阳极上无铜沉积

          锡Sn阳极之类的可溶性阳极,通常是设置在电解槽里。当它浸渍在电解液中的情况下,连不通电流时不出现金属置换沉积现象,保持电解液中的金属浓度不变是最重要的。但是,以往的电镀工艺中,几乎不能保证这样一点。此次日本上村工业公司公布的利用Soft
        Alloy
        GTC电解液的Sn-Cu电镀技术,却能保证在阳极无Cu置换沉积现象,而且通过对比实验获得证实。该对比实验情况如下:试验用阳极是Sn阳极,作为对比实验用电解液分别是Sn-1wt%Cu、Sn-3.5wt%Ag和Sn-5wt%Bi(均是强酸性电解液),试验用样品电解液是Soft
        AlloyGTC-20型So-Cu电解液,实验时把Sn阳极投入各个电解液中呈浸渍状态并在常温下放置24小时。对比实验结果表明,浸渍在Sn-1wt%Cu、Sn-3.5wt%Ag和Sn-Swt%Bi电解液中的各Sn阳极,其表面分别都有Cu、Ag和Bi金属沉积,各电解液中的金属浓度都发生变化;然而,浸渍在Soft
        Alloy GTC-20型Sn-Cu电解液中的Sn阳极上却无Cu沉积,电解液中的金属浓度保持不变。这是Soft
        AlloyGTC-20电解液的独到特点。

          (10)作业性良好且成本低廉

          在强酸性的Sn-Cu、Sn-Ag和Sn-Si电解液里,使用可溶性阳极时在其表面上会置换沉积出Cu或Ag或者Bi金属。因此,这些电解液中的金属比率的平衡遭到破坏,电镀层的合金比率管理很困难,与此同时还必须维护电镀用阳极,如像清除阳极上置换出来的金属等都是很麻烦的作业。若用不溶性Pt/Ti板等不溶性阳极时,需要补充药液费等导致生产成本大增。这正是无铅焊料电镀比以往的Sn-Pb焊料电镀在作业性和生产成本方面增加负担的原因。

          日本上村工业公司开发的Soft Alloy
        GTC-20型sn-Cu电解液,消除了以往无铅焊料电镀术的难题;这种Sn-Cu电镀技术,确实具备电镀作业性良好和成本低廉的优点


  
  电镀专题:4.影响镀层分布的因素 镀层在阴极表面分布的均匀性,是决定镀层质量的一个重要因素。电镀工业中,常用分散能力这一术语来表示镀层在阴极表面上的均匀性。镀层的分散能力又称为均镀能力(T.P.),就是电解液具有使阴极表面镀层厚度均匀分布的能力。镀液使阴极表面上镀层厚度的分布越均匀,分散能力越好。为种性能在大多数情况下是由镀液的性能决定的,所以叫作镀液的分散能力。
    还有一个与镀层分布有关的术语,叫做覆盖能力,又称为深镀能力或遮盖能力(C.P.),亦被称作钻性,它就是电解液具有使阴极表面深凹处镀上镀层的能力。由于它主要也是由镀液的性能决定的,所以亦叫作镀液的覆盖能力。镀液的覆盖能力与分散能力的含义是不同的,须注意区别。
    影响镀层分布的主要因素是镀液的阴极极化度、电导率、电极和镀槽的几何因素、阴极电流效率和基体金属的表面状态等因素。
1、阴极极化度
    阴极极化度就是阴极极化曲线的斜率,也就是阴极电位随阴极电流密度变化而变化的程度。当其它条件不变时,极化度越大,镀液的分散能力越好。所以凡是能增大阴极极化度的因素(如选择适当的络合剂或添加剂),均能改善镀液的分散能力。
2、镀液的电导率
    镀液的电导率是由溶液中各种离子的导电能力所决定的。当其他条件不变时,镀液的电导率越高,其分散能力越好。这里有一个先决条件,那就是阴极极化度不能等于0或趋近于0(阴极电流密度变化时阴极电位不变,则极化度为0)。否则,即使提高镀液的电导率,也不能改善镀液的分散能力,如镀铬液在操作电流密度范围内的极化度几乎等于0。所以虽然它的电导率很高,其分散能力还是很差的。但是对于一般镀液来说,提高电导率大多均能改善它的分散能力。
3、电极和镀槽的几何因素
    电极的形状、尺寸,电极间的距离、电极在镀槽中的位置和镀槽的形状等,都会影响镀层在阴极表面的均匀分布,电镀生产中,采用的象形阳极和适当增大阴极、阳极间的距离,就是为了改善镀层在阴极表面的均匀分布。
4、阴极电流效率
    阴极电流效率对于分散能力的影响取决于阴极电流效率与阴极电流密度变化关系,为种关系可分为三种情况:
A.阴极电流效率不随阴极电流密度的变化而变化。这类镀液的阴极电流效率对镀液的分散能力影响不大(如硫酸盐度铜和硫酸盐镀锌);
B.阴极电流效率随阴极电流密度的增大而增大(如镀铬液)。对于这类镀液,阴极电流密度大的部位的电流效率高,阴极电流密度小的部位其电流效率低,这样,阴极的电流效率使镀液的分散能力降低;
C.阴极电流效率随阴极电流密度的增大而降低。这类镀液与上面刚好相反,阴极电流效率使镀液的分散能力提高
5、基体金属的表面状态
    由于氢在粗糙表面上的过电位小于光滑表面,所以在粗糙表面上氢容易析出,镀层就不容易沉积,因此,提高基体金属的光洁度往往可以改善覆盖能力。又如基体金属中含有氢过电位较小的杂质(如铸铁中的碳),在这些杂质上氢容易析出,镀层就难以沉积。如果氢在基体金属上的过电位小于镀层金属上的过电位,那么刚进槽电镀时,将有较多的氢气逸出。倘若这时局部先镀上镀层,那么由于先镀上镀层的部位析氢少,电流效率高,这将使分散能力降低。此时为了镀取均匀连续的镀层,常在开始通电时采用短时间的大电流密度冲击,使基体金属表面很快地先镀上一层氢过电位大的镀层金属,然后按正常规定的电流密度进行电镀,就可以消除基体金属对分散能力和覆盖能力的不良影响。
6、微观分散能力和整平能力
A.微观分散能力
    所谓微观分散能力是指镀液使阴极表面轮廓的微细不规则处镀覆均匀镀层的能力(M.T.P.)。它是指粗糙度比较小,波谷的深度小于0.5mm,波峰与波谷的距离很小的表面上镀层分布的均匀性。要使镀液的微观分散能力好,主要要加快放电金属离子的扩散,降低浓差极化,使微观的峰处和谷处都不缺乏放电金属离子,从而使谷处与峰处的沉积速度接近或相等。要实现这一目的有下述几点:
a) 要尽量提高放电金属离子的浓度,以加快扩散速度;
b) 加快搅拌镀液的速度和提高温度,以使扩散层厚度变薄。这些因素能改善微观分散能力,但却不利于前面所述的(宏观)分散能力的改善,所以微观分散能力与宏观分散能力是不同的。例如氰化物镀铜液的分散能力是很好的,但微观分散能力却较差;相关,硫酸盐镀铜的他散能力较差,而它的微观分散能力却较好。
B.整平作用
  它是指镀液使阴极的微观谷处与微观峰处镀取更厚镀层的能力(L.P.)它有三种类型:
a) 几何整平作用:它是镀液在阴极和微观不同表面上镀取相同厚度镀层的整平作用,这种整平作用是理想的微观分散能力
b) 负整平作用:它是镀液在阴极的微观谷处比微观峰处镀得较薄镀层的整平作用
c) 正整平作用:它是镀液在阴极的微观谷处比微观峰处镀取更厚镀层的整平作用。正整平作用是由于整平剂吸附在微观峰处的浓度大于微观谷处,使峰处的阻化作用大于谷上的阻化作用,从而使放电金属离子在峰上的沉积速度比谷上慢而得到整平。
    正整平的好坏,常与镀液中整平剂的浓度有关。整平剂浓度过高或过低,都不能获得好的整平作用。

  
  电镀专题:5.电镀液中主要成份的作用 电镀溶液的组成对电镀层的结构有着很重要的影响。不同的镀层金属所使用的电镀溶液的组成可以是各种各样的.但是都必须含有主盐。根据主盐性质的不同,可将电镀溶液分为简单盐电镀溶液和络合物电镀溶液两大类。
    简单盐电镀溶液中主要金属离子以简单离子形式存在(如cu2+、Ni2+、Zn2+等),其溶液都是酸性的。在络合物电镀溶液中,因含有络合剂,主要金属离子以络离子形式存在(如[Cu(CN)3]2-、[Zn(CN)4]2-、[Ag(CN)2]-等),其溶液多数是碱性的,也有酸性的。除主盐和络合剂外,电镀溶液中经常还加有导电盐、缓冲剂、阳极去极化剂以及添加剂等,它们各有不同的作用。
    一、主盐
    能够在阴极上沉积出所要求的镀层金属的盐。
    主盐浓度高,溶液的导电性和电流效率一股都较高,可使用较大的电流密度,加快了沉积速度。在光亮电镀时,镀层的光亮度和整平性也较好。但是,主盐浓度升高会使阴极极化下降,出现镀层结晶较粗,镀液的分散能力下降,而且镀液的带出损失较大,成本较高,同时还增加了废水处理的负担。主盐浓度低,则采用的阴极电流密度较低.沉积速度较慢,但其分散能力和覆盖能力均较浓溶液好。
    因此,主盐浓度要有一个适当的范围,并与溶液中其他成分的浓度维持一个适当的比值。有时,由于使用要求不同.即使同一类型的镀液,其主盐含量范围也不同。对于电镀形状复杂的零件或用于预镀、冲击镀时,要求较高的分散能力,一般多采用主盐浓度较低的电镀溶液。而快速电镀的溶液,则要求主盐含量高。
    二、导电盐
    能提高溶液的电导率,而对放电金属离子不起络合作用的物质。这类物质包括酸、碱和盐,由于它们的主要作用是用来提高溶液的导电性,习惯上通称为导电盐。如酸性镀铜溶液中的H2SO4,氯化物镀锌溶液中的KCL、NaCl及氰化物镀铜溶液中的NaOH和NaCO3等。
    导电盐的含量升高,槽电压下降,镀液的深镀能力得到改善,在多数情况下,镀液的分散能力也有所提高。
    导电盐的含量受到溶解度的限制.而且大量导电盐的存在还会降低其他盐类的溶解度。对于含有较多表面活性剂的溶液,过多的导电盐会降低它们的溶解度,使溶液在较低的温度下发生乳浊现象.严重的会影响镀液的性能。所以导电盐的含量也应适当。
    三、络合剂
    在溶液中能与余属离子生成络合离子的物质称为络合剂。如氰化物镀液中的NaCN或KCN,焦磷酸盐镀液中的K4P2O7或Na4P2O7等。
    在络合物镀液中,最具重要意义的,并不是络合剂的绝对含量,而是络合剂与主盐的相对含量,通常用络合剂的游离量来表示,即除络合金属离子以外多余的络合剂。
    络合剂的游离量增加,阴极极化增大,可使镀层结晶细致,镀液的分散能力和覆盖能力都得到改善,但是.阴极电流效率下降,沉积速度减慢。过高时,大量析氢会造成镀层【请不要乱说话,词语被禁止】,低电流密度区没有镀层,还会造成基体金属的氢脆。对于阳极来说,它将降低阳极极化,有利于阳极的正常溶解。络合剂的游离量低,镀层结晶变粗,镀掖的分散能力和覆盖能力都较差。
   

精彩评论7

lovelyivyq 发表于 2013-6-4 21:08:54 | 显示全部楼层 · 来自 日本
真的有么  
pcheng 发表于 2013-8-18 19:24:29 | 显示全部楼层 · 来自 韩国
不错啊! 一个字牛啊!  
wHuT灬枫少 发表于 2014-2-9 22:51:42 | 显示全部楼层 · 来自 江苏南京
支持~~顶顶~~~  
xiaomi543 发表于 2014-5-12 16:59:55 | 显示全部楼层 · 来自 河南郑州
回帖是种美德.
ssplyh 发表于 2015-11-30 18:49:42 | 显示全部楼层 · 来自 浙江杭州
人气还要再提高
神甫 发表于 2016-8-18 02:54:07 | 显示全部楼层 · 来自 美国华盛顿州格兰特摩西湖
大家一起回复,拿金币
狼狼 发表于 2016-9-11 12:50:56 | 显示全部楼层 · 来自 法国
不错不错.,..我喜欢
您需要登录后才可以回帖 登录 | 立即注册  

本版积分规则

右上角“高级模式”进入更多文字、附件、图片等编辑模式;
发帖前请在网页顶端搜索网站内容,已有内容请勿重复发布;
请按版规要求发布帖子,禁止回复表情、数字等无意义内容;
请按网站要求的文件格式上传资料,建议将资料压缩后上传;
提倡文明上网净化网络环境,抵制“黄赌毒诈”等违法信息!

关于我们 | 版权声明 | 侵权申诉 | 帮助中心 | 浙ICP备13003616号-2  |  浙公网安备33011002013884号 网站统计

本站信息均由会员发表,不代表本站的立场;禁止发布任何违法信息及言论,若有版权异议请联系网站管理员。

Copyright © 2010- 爱我环保学社(http://www.25hb.com)版权所有 All Rights Reserved.

Powered by Discuz! X3.4© 2001- Comsenz Inc.